

Statistical Principles Define an Open-Source Computational Workflow for Mass Spectrometry Imaging Experiments with Complex Designs: A Case Study of Osteoarthritis

Ethan B Rogers¹, Sai Srikanth Lakkimsetty¹, Kylie Ariel Bemis¹, Charles A Schurman², Peggi Angel³, Birgit Schilling², Olga Vitek¹

(subsetting data, pixels as

replicates, reporting main

effects when interaction is

Handling missing values;

• Residual plots (quantile

Addressing abnormality

Evaluate model

assumptions

quantile, uniform)

(transformation)

zeros, and left censoring

Osteoarthritis study: Biological context and research question informed the study design and data structures.

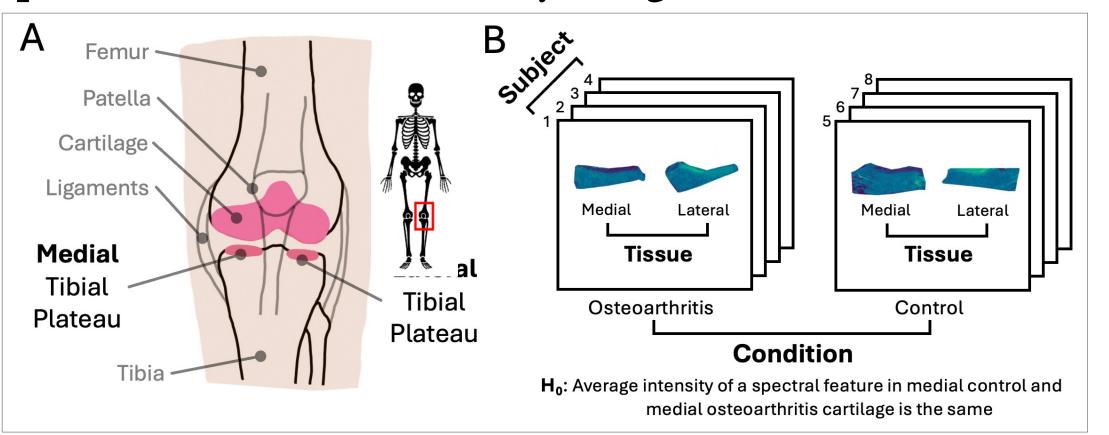


Figure 1: A: Anatomy of the knee joint. B: Experimental design. Four control subjects and four subjects with osteoarthritis contributed lateral and medial tissues. One null hypothesis of interest is stated below.

Osteoarthritis study: Peak-picking and normalization removed background noise and reduced the overall number of spectral features.

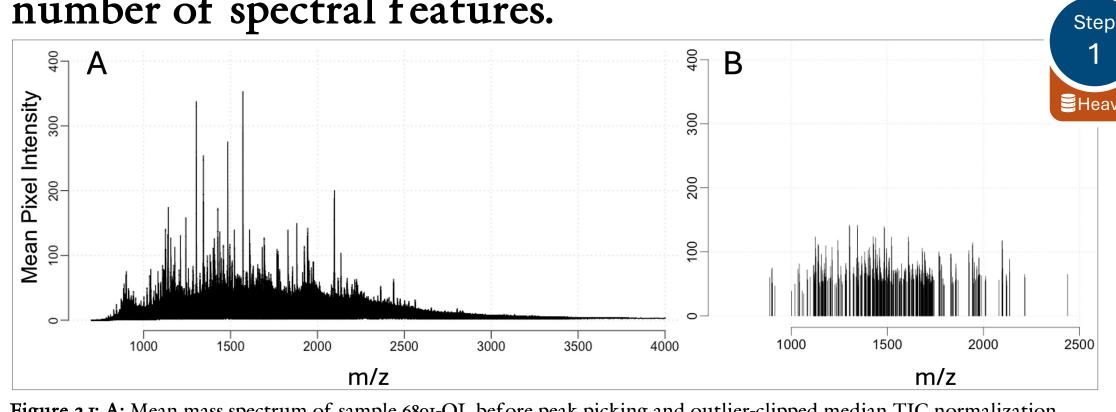
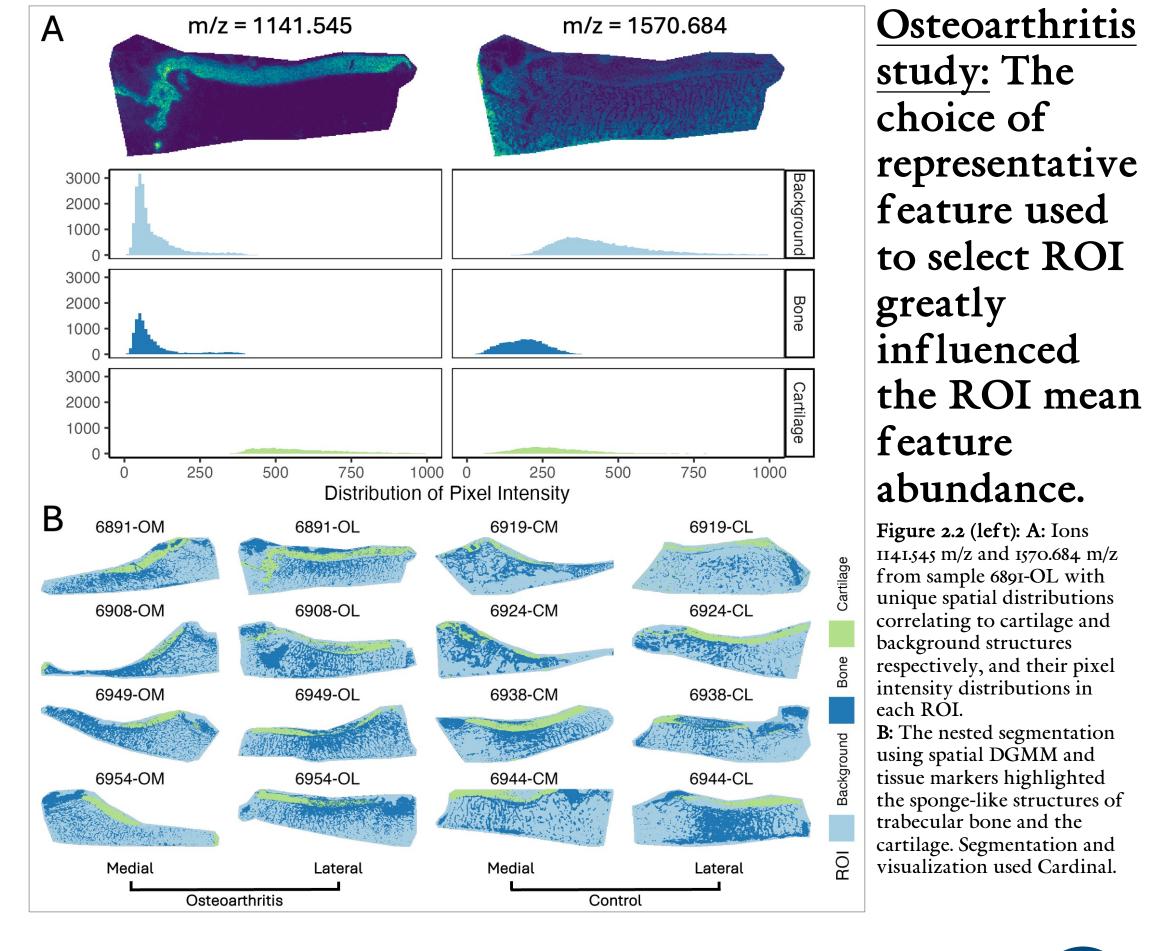
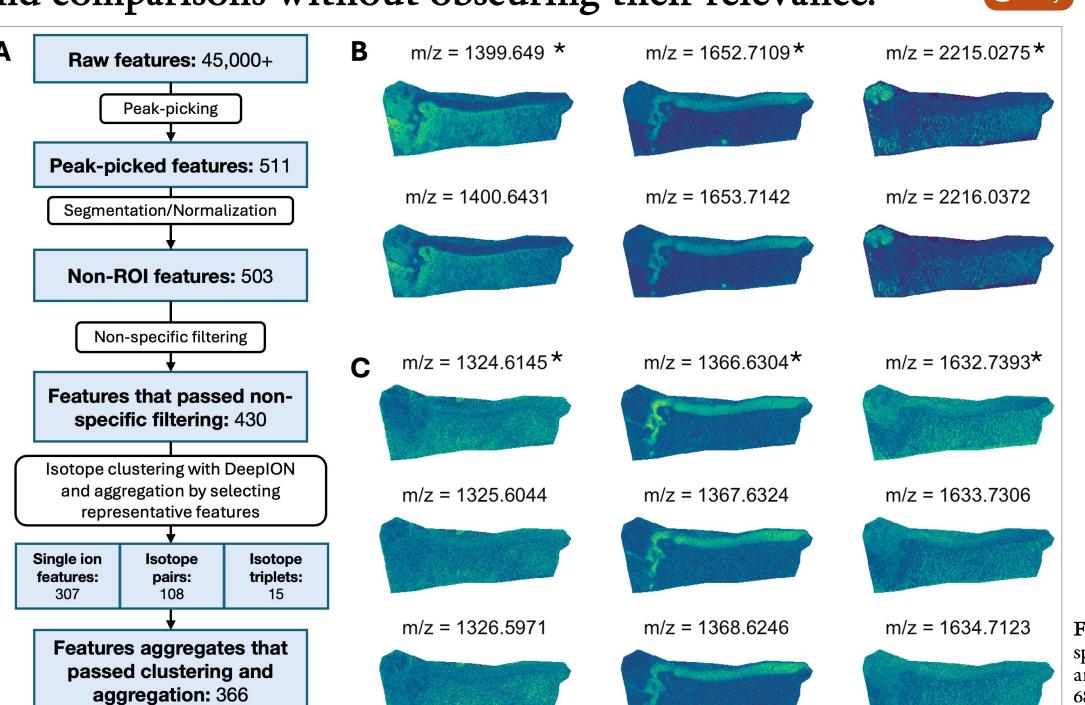


Figure 2.1: A: Mean mass spectrum of sample 6891-OL before peak picking and outlier-clipped median TIC normalization. B: Mean mass spectrum after peak-picking. Peak-picking reduced the overall number features from over 45,000 to 511. Normalization enabled comparison between tissues. Peak-picking and normalization were done using Cardinal.



Osteoarthritis study: Clustering and aggregation of spatially similar features reduced the number of features 2 and comparisons without obscuring their relevance.



¹Khoury College of Computer Sciences at Northeastern University, Boston, MA; ²Buck Institute for Research on Aging, Novato, CA; ³Department of Pharmacology & Immunology at the Medical University of South Carolina, Charleston, SC Filtering and Planning future Statistical Statistical Data modeling experiments inference

Read data

- Formats In/out of memory
- Peak pick
- Alignment, binning &
- calibration
- S:N ratio Peak selection
- Degree of feature reduction Segment ROIs
- Based on research question Segmentation method (SSC)
- sDGMM, HCA, etc.) Choosing segmentation
- features Minimizing information

- Method (TIC, MIC, RMS)
- Handling outliers
- Determining the normalization "constant"

Filter, non-Specify statistical specifically model

- Criteria to isolate noisy Choice of model
- Model features features independently Cluster related

Clustering method (mass differences, spatial similarity,

features

- Implementation (many choices)
- Degree of feature reduction Aggregate feature
- clusters Mean (large or spatially heterogenous clusters) or
- clusters with heterogenous expected mean intensity, i.e. isotopes, adducts)

Statistical analysis of multi-tissue mass spectrometry imaging (MSI) experiments with complex designs has the potential to yield meaningful population level conclusions about the relationships between disease states, tissue types, spatial distributions, and ion abundance. However, these data are complex to analyze, with many steps (detailed in the workflow to the *above*) and considerations specific to MSI. Additionally, many tools used to process, visualize, and analyze these data are proprietary - and many open-source alternates are underdeveloped or unready for use by non-computational scientists. Statistical methods for analysis are mature, but complex to understand. Although many are trivial, some steps in these analyses are computationally

Introduction

We highlight these issues by providing a workflow, replete with recommendations based on experimental and simulated data, and mature, open-source tools and software like Cardinal [1] within which to perform analyses. As a motivating example we demonstrate the steps of this analysis on an MSI dataset of human tibial plateaus from subjects with and without osteoarthritis, illustrating specific decisions using simulations. Details of sample preparation and data acquisition, as well as novel techniques to image bone can be found in [2].

B Example R Code.R 🖃 🔷 | 🔚 | 🔍 🎢 📲 1 library(Cardinal) 3 # Read Data (Step 1) 4 m < readMSIData("./path/to/first/MSI.imzML")</pre> 5 for (i in rest.of.MSI.paths) m <- c(m, readMSIData(i))</pre> 9 # Preprocess (Step 1) 10 | m <- m |> normalize() |> smooth() |> reduceBaseline() |> peakPick(SNR=7, method="diff") |> peakAlign() # Generate ROIs from known marker (Step 1) 15 sdgmm <- spatialDGMM(subsetFeatures(m, mz = 1141.55), 17 m\$ROI <- factor(sdgmm\$class, levels = c(1,2),</pre> labels = c("cartilage", "other"))

20 # or generate ROIs manually (Step 1) 21 cartilage.pixels <- selectROI(m, mz = 1141.55) 22 m\$ROI <- factor(cartilage.pixels, levels = c(T,F),</pre> labels = c("cartilage", "other")) 25 # Filter, Non-specifically (Step 2) m <- summarizeFeatures(m, stat = c("mean", "sd"))</pre> <- subsetFeatures(m, mean > quantile(mean, .25) sd > quantile(sd, .25)) 30 # Model and test (Steps 3 & 4) 31 m\$subject <- subject.pixels.factor.vector</pre> m\$condition <- condition.pixels.factor.vector</pre> 33 m\$tissue <- tissue.pixels.factor.vector

39 topFeatures(mt) Figure 4: Example code using Cardinal in R for basic untargeted differential analysis. Outputs and code for design, isotope clustering, and sample size calculations are omitted for clarity.

<- meansTest(m, ~ condition * tissue, ~ 1|subject,

contrast.method = "pairwise")

contrast.specs = ~ condition | subtissue,

samples = run(all_mse),

Figure 3 (left): A: Workflow of reduction in features from peak picking, segmentation, nonspecific filtering, and feature clustering and aggregation. Peak-picking occurred in Cardinal and clustering was done with DeepION. [3] B: Isotope groups with two members in tissue 6891-OL had similar spatial distributions. Starred m/z were chosen as the representative feature of the isotope group. C: As in B, but for isotope groups with three members.

34 m <- subset(m, ROI == "cartilage")</pre>

Translate research question to statistical

- hypothesis
- In the terms of the model
- Tests hypotheses of Specification of response interest variable, independent
- Calculating standard error variable(s), fixed and random Calculating degrees of Estimation (SS/ML/REML)
- Modeling choices' impact on Addressing singularity and variance and degrees of convergence issues Avoiding common mistakes freedom estimates
 - Adjust for multiple testing to control FDR
 - Inspect unadjusted P values for evidence of interdependence

clustering. **Computational** Osteoarthritis study: 1781.857 m/z had

▲ Estimate sample size

Get estimates of variance

from statistical models

difference, significance

differentially abundant

Standard statistical

Cardinal or Cardinal data

packages, specific to the

Other software packages

threshold, and proportion of

for future work

Specify anticipated

structures

experiment

(e.g., DeeplON)

nainly preprocessing and

the greatest signal to noise ratio of all comparisons in cartilage.

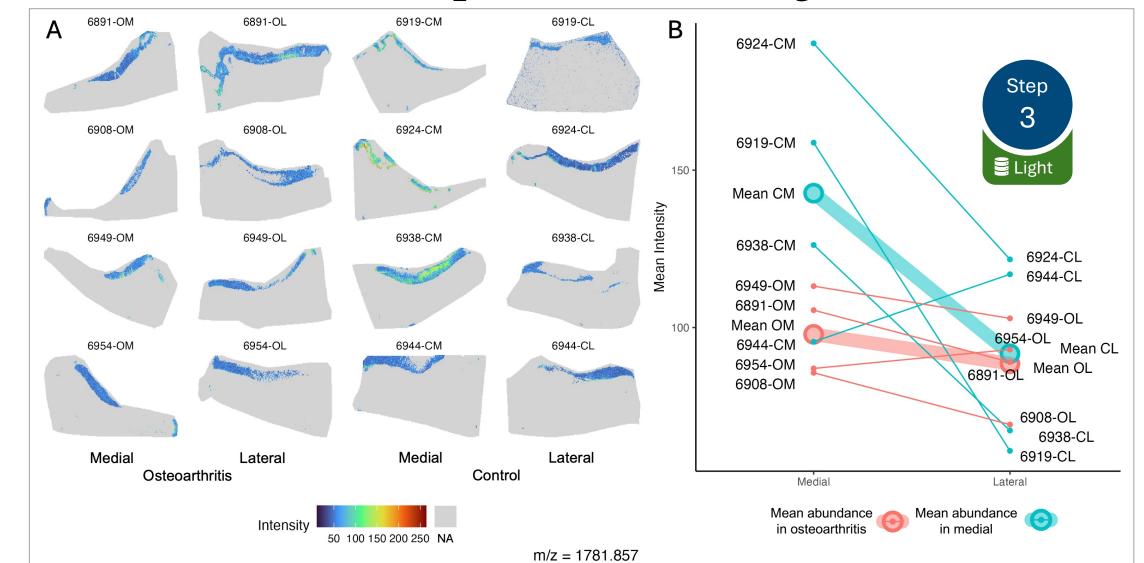
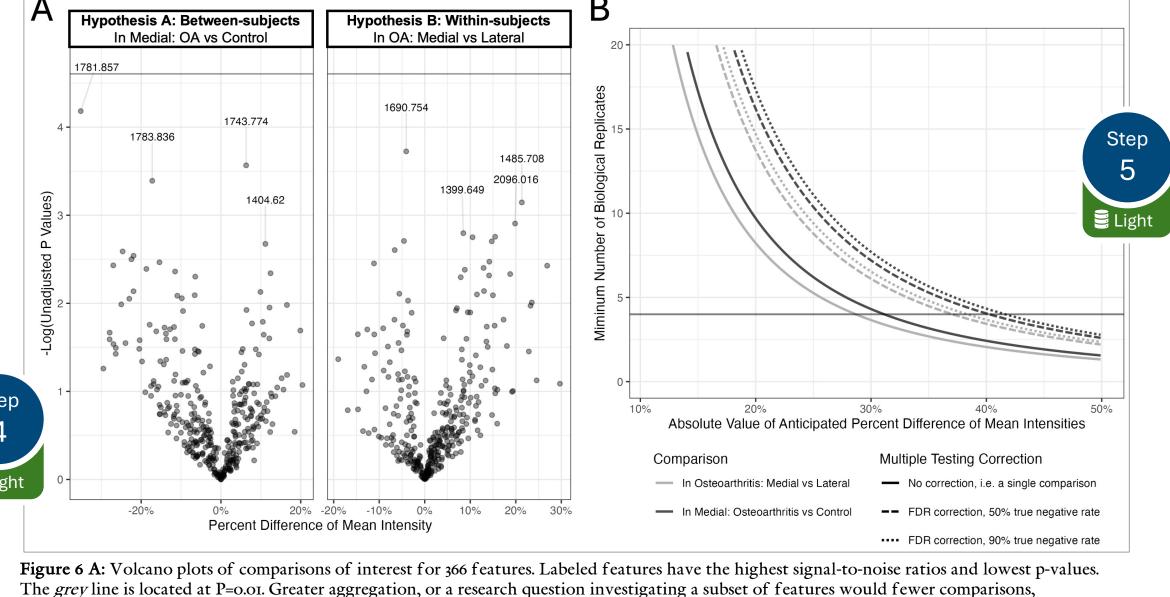


Figure 5: A: Single ion images of the bone ROI of each tissue. Missing pixel intensities (grey) are dropped during summarization. B: Interaction plots of tissue and condition for 1781.857 m/z. Hypothesis A was the difference of medial and lateral osteoarthritis means; points Mean OM and Mean OL. Hypothesis B was the difference of osteoarthritis and control medial means; points Mean OM and Mean CM. The difference in means can be thought of as the signal, and the spread of the points as noise; their ratio is the test statistic.

Osteoarthritis study: Within-subjects comparisons had greater signal-to-noise ratios than between-subjects comparisons.



increasing power of the experiment. B: Minimum number of subjects needed per factor level combination to detect comparison percent difference with based on the osteoarthritis study dataset. Solid horizonal line marks the number of biological replicates in the osteoarthritis study, 4.

Recommendations for designs and analysis of any future MSI experiment with complex designs

- Increase signal • Define specific ROIs using exogenous information
- Use within-subjects comparisons when possible
- Increase sample size • Use previous estimates of variance to determine required
- Reduce noise
- Use rigorous QC and standards Perform sound normalization and peak-picking Cluster and aggregate isotopes and adducts
- Reduce number of comparisons • Reduce tests by clustering and non-specific filtering
- Use targeted interpretation of mass spectra Use appropriate statistical models
- Specify statistical models that describe all sources of variation
- Avoid double-dipping and using pixels as replicates
- Verify model assumptions Correct for multiple testing
- Understand where missing values, outliers, and zeros come from and address them accordingly [1] Bemis, K. A.; Föll, M. C.; Guo, D.; Lakkimsetty, S. S.; Vitek, O. Cardinal v.3: A Versatile Open-Source Software for Mass Spectrometry Imaging Analysis. Nat Methods 2023, 20 (12), 1883-1886. https://doi.org/10.1038/s4.159

3-02070-z. [2] Schurman, C. A.; Bons, J.; Woo, J. J.; Yee, C.; Tao, N.; Alliston, T.; Angel, P.; Schilling, B. Tissue and Extracellular Matrix Remodeling of the Subchondral Bone during Osteoarthritis of Knee Joints as Revealed by Spatial Mass Spectrometry Imaging. Preprint. https://doi.org/10.1101/2024.08.03.606482. [3] Guo, L.; Xie, C.; Miao, R.; Xu, J.; Xu, X.; Fang, J.; Wang, X.; Liu, W.; Liao, X.; Wang, J.; Dong, J.; Cai, Z. DeepION: A Deep Learning-Based Low-Dimensional Representation Model of Ion Images for Mass Spectrometry Imaging. Anal. Chem. 2024, 96 (9), 3829-3836. https:// C.; Agar, J.; Vitek, O. Unsupervised Segmentation of Mass Spectrometric Ion Images Characterizes Morphology of Tissues. Bioinformatics 2019, 35 (14), i208-i217. https://doi.org/10.1093/bioinformatics/btz34

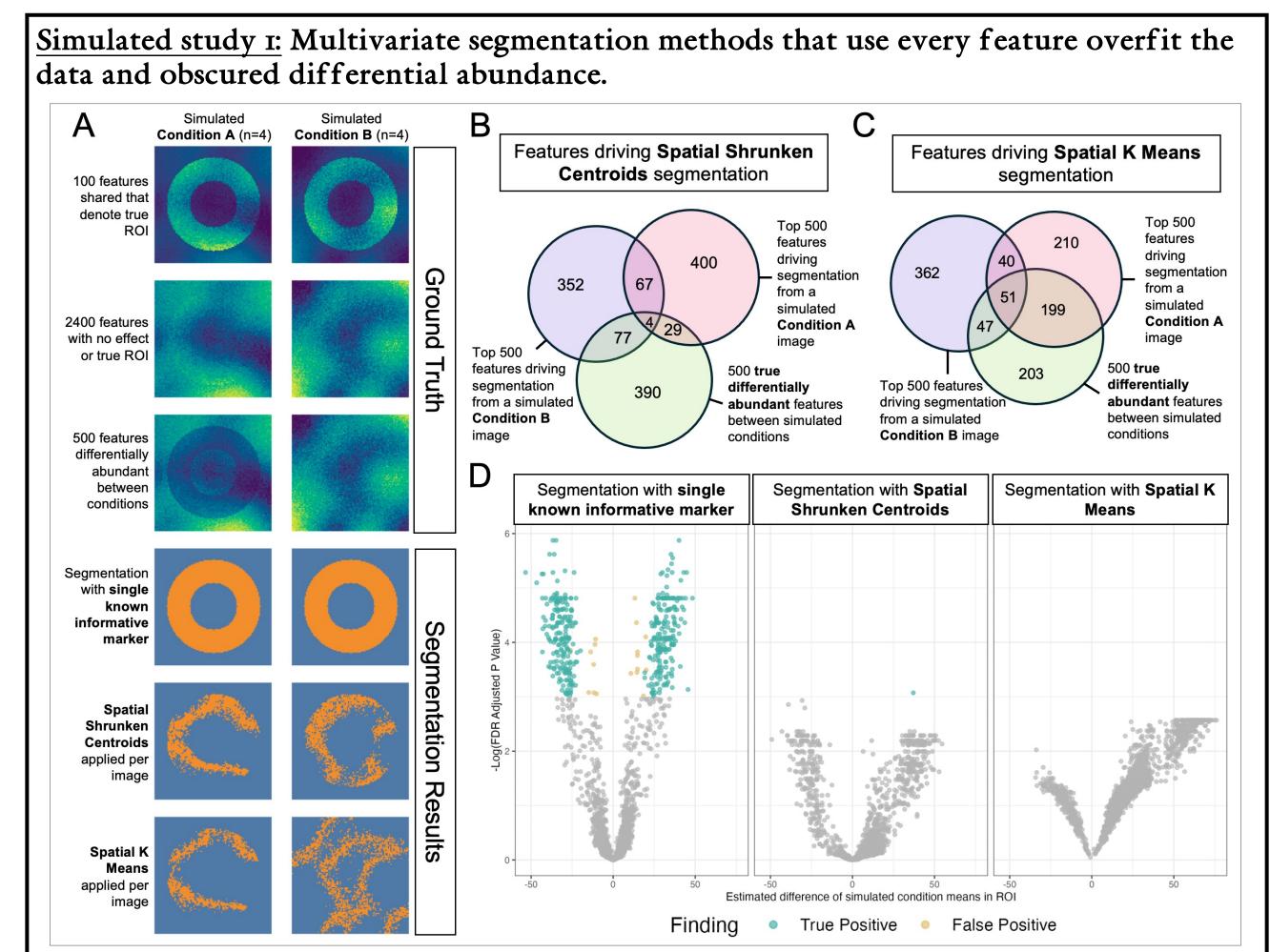


Figure 7.1: A: Description of the simulation experimental design and segmentation methods. All simulated images share 100 donut-shaped ROI defining features. B: Venn diagrams of top 500 features driving SSC segmentation from a simulated condition A image, a simulated condition B image, and the 500 true differentially abundant features. C: The same as B but for SKM. D: Volcano plots for t-tests comparing simulated conditions with significance set to FDR-adjusted P<0.05. All segmentation and visualization used Cardinal.

Simulated study 2: Detecting differentially abundant features was more sensitive in within-subject comparisons in than in between-subjects comparisons in the presence of large simulated biological variation.

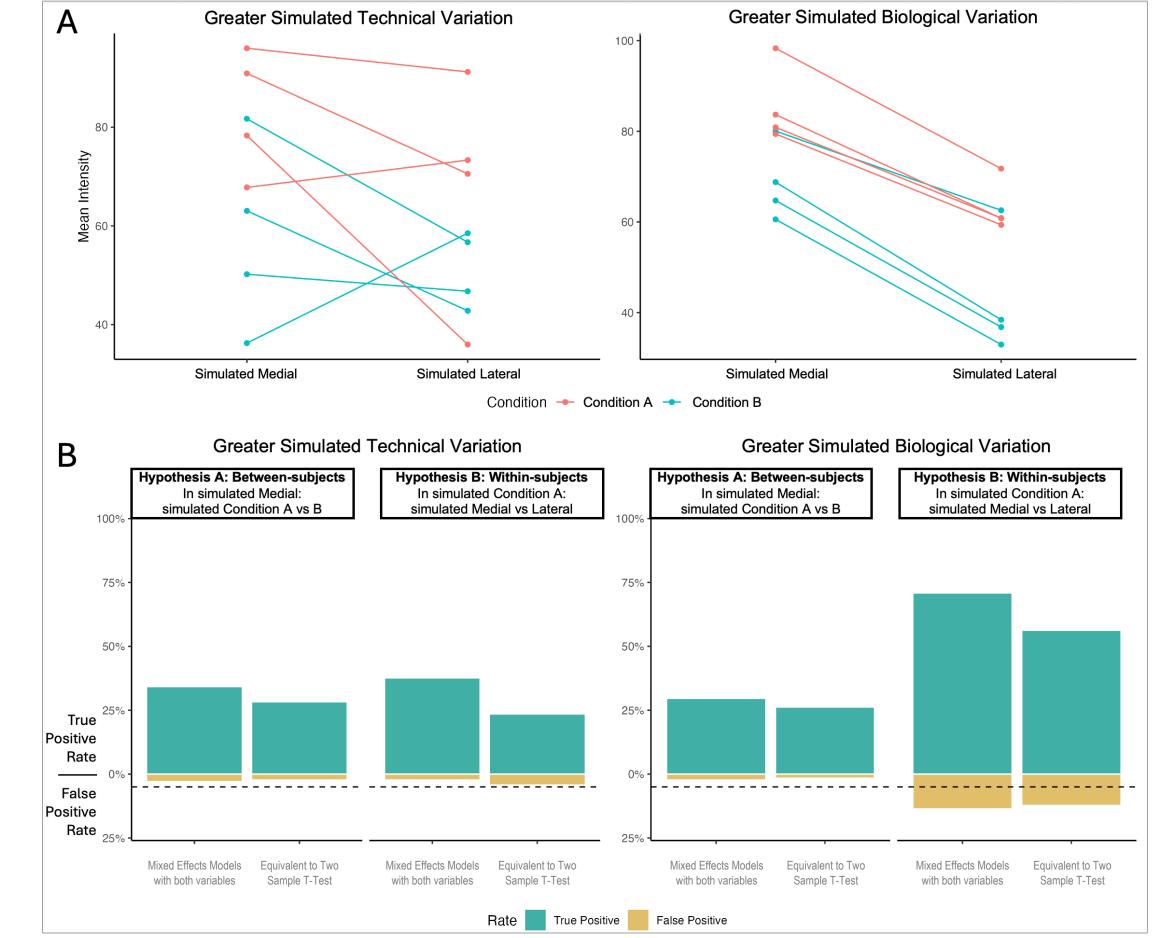


Figure 7.2: A: Interaction plots of two representative simulated spectral features. Left: simulated within-subject and technical variation larger than the biological between-subject variation. Right: simulated within-subject and technical variation smaller than the biological betweensubject variation. B: True and false positive rates for 300 simulated features analyzed with models in the model table. Within-subject comparisons and mixed effects models were most sensitive. Horizontal dashed line represents a false positive rate of 5%. Comparisons were considered positive when unadjusted P<0.05.

Simulated study 2: Using pixels as biological replicates overfitted the data and produced many false positive differentially abundant features.

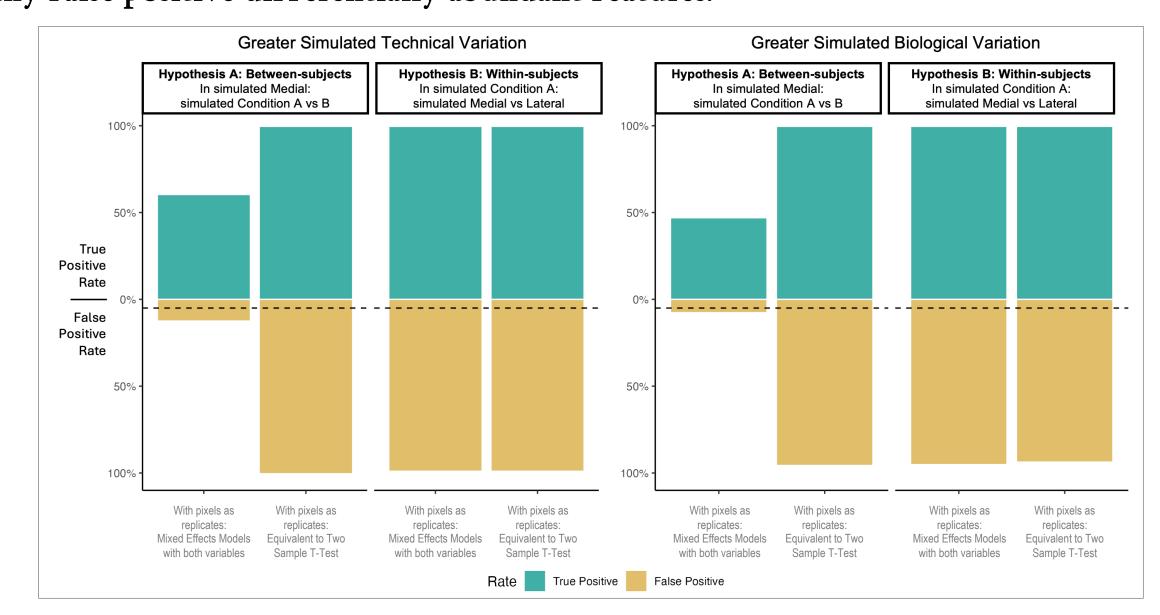


Figure 7.3: Like 7.2B but using pixels as replicates. Right: within-subject and technical variation smaller than the biological between subject variation. When compared to the above, modeling feature intensities in each pixel, and viewing features as replicates, had a much higher rates of false and true positives than models using mean pixel intensity.